Section 15.4-15.5 Main Points

Section 15.4: Differentiability and Tangent Planes

Definition (Differentiability): Assume that $f(x, y)$ is defined in a disk D containing (a, b) and that $f_{x}(a, b)$ and $f_{y}(a, b)$ exist. Then, $f(x, y)$ is differentiable at (a, b) if it is locally linear- that is if

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)-L(x, y)}{\sqrt{(x-a)^{2}+(y-b)^{2}}}=0
$$

In this case, the tangent plane to the graph at $(a, b, f(a, b))$ is $z=L(x, y)$ given by

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Note that from the equation above we can see that a normal vector to the tangent plane at (a, b) is given by

$$
n=\left\langle f_{x}(a, b), f_{y}(a, b),-1\right\rangle
$$

Since the local linearity condition can be hard to check, we have a theorem to help us determine differentiability.
Theorem 2. (p.785): If $f_{x}(x, y)$ and $f_{y}(x, y)$ exist and are continuous on an open disk D, then $f(x, y)$ is differentiable on D.

By definition, if $f(x, y)$ is differentiable at (a, b) then it is locally linear and we can approximate $f(x, y)$ near a point $P=(a, b)$ by the equation of the plane tangent to f at P :

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \text { for }(x, y) \text { near }(a, b) .
$$

Moreover, the linear approximation can be written in terms of change in f :

$$
\Delta f \approx f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y
$$

Section 15.5: The Gradient and Directional Derivatives

Definition: The gradient of a function f is the vector of partial derivatives:

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

Theorem 2. Chain rule for paths (p.792): If f and $r(t)$ are differentiable, then

$$
\frac{d}{d t} f(r(t))=\nabla f_{r(t)} \cdot r^{\prime}(t)
$$

The idea of composite functions of this type can be seen as follows: If $f(x, y, z)$ gives the temperature as a function of position, and $r(t)$ gives the position of say a mountain climber as a function of time, then $\frac{d}{d t} f(r(t))$ gives the rate of change of temperature with respect to the mountain climber.

Recall that the directional derivative $D_{u} f(a, b)$ is the rate of change of f along the linear path through $P=(a, b)$ in the direction of unit vector u.

Theorem 3. (p.795) We can compute the directional derivative as follows: if u is a unit vector, then

$$
D_{u} f(P)=\nabla f_{P} \cdot u
$$

The following theorem is very important for you to learn and understand because it describes the properties of the gradient.

Theorem 4 (p.797): Assume that $\nabla f_{P} \neq 0$. Let u be a unit vector making an angle of θ with ∇f_{P}. Then,

$$
D_{u} f(P)=\left\|\nabla f_{P}\right\| \cos \theta
$$

- ∇f_{P} points in the direction of the maximum rate of increase of f at P.
- $-\nabla f_{P}$ points in the direction of the maximum rate of decrease of f at P.
- ∇f_{P} is normal to the level curve of f at P.

Another use of the gradient is in finding the normal vectors to the tangent planes to a surface with equation $F(x, y, z)=k$, where k is constant.

Theorem 5 (p.799) Let $P=(a, b, c)$ be a point on the surface given by $F(x, y, z)=k$ and assume that $\nabla F_{p} \neq 0$. Then, ∇F_{P} is a normal vector to the tangent plane to the surface at P. The tangent plane has equation:

$$
F_{x}(a, b, c)(x-a)+F_{y}(a, b, c)(y-b)+F_{z}(a, b, c)(z-c)=0
$$

